
SAYFIELD INTERNATIONAL

Description of the TKC

Toolkit Creator
An MSC.ADAMS based Environment for Rapid Design and

Management of Custom Simulation Toolkits

Chris Verheul

2/25/2014

This manual describes the basic assumptions made in TKC, the additional GUI elements and

advised working method of TKC for defining advanced model component toolkits for

MSC.ADAMS. Users following the basic rules described and the TKC features added to the

standard MSC.ADAMS/View graphical environment will drastically increase their efficiency in

defining, maintaining and improving custom toolboxes of project specific simulation

components.

 Description of the TKC Toolbox Page 2

Contents

Installation of TKC .. 3

Installation and first ADAMS TKC session .. 3

The TKC Standard Toolbar ... 5

About TKC and TKC-based Toolkits .. 6

More on TKC UDEs .. 6

C_UDE or Component-UDE ... 6

D_UDE or Data-UDE .. 7

Sub Components .. 7

TKC features and properties .. 8

Properties and aspects of a TKC based Toolkit ... 8

Example Toolkit Component: MBS (Multi-Body Samples) 9

TKC File and Directory Structure.. 11

User Project level file and directory structure ... 11

Site level file and directory structure ... 11

Shared level file and directory structure .. 12

Toolkit level file and directory structure ... 12

TKC System level file and directory structure .. 13

The TKC Graphical User Interface (GUI) ... 14

The Toolkit Dialog ... 14

The generic Component or C_UDE dialog .. 15

The generic Component Data of D_UDE dialog .. 16

Typical aspects to consider using UDEs and macros .. 17

Placeholders used in this documentation ... 18

Creating and Using a new Toolkit Component .. 19

Introduction .. 19

Description of the Component ... 19

Building the non-parameterized component .. 20

Parameterization of the component structure .. 22

Register the Component as a TKC C_UDE ... 27

Registration of the Component and its Interface ... 27

Definition of the Component Creation Macros ... 28

 Description of the TKC Toolbox Page 3

Installation of TKC
You have received a zipped file with a working directory of a TKC project. The files
to define all TKC functionality are included and are defined to set up a so-called local
installation. This means that all names and directories are defined relative to the
current working directory. Users can move and rename directories after the instal-
lation as long as correct changes are made in the respective *.cfg files. For more
understanding of the TKC system files and directories we refer to the files section in
this manual.

Installation and first ADAMS TKC session

1. Unzip the Zip file into a working directory (say C:\My_Work).
2. Check the files and directory tree in the working directory (read the files section).
3. Start ADAMS with the current directory as the working directory (or create a

shortcut on your desktop in Windows so you start ADAMS with the desired wor-
king directory as start-up directory).

4. The ADAMS system file aview.cmd will define an additional button on the main
menu enabling you to load the TKC system. You can rename aview.cmd (i.e. to
aview_.cmd). In this case the button will only appear after manually loading this
*.cmd file.

5. In the first session, ADAMS defines all TKC macros and dialogs and creates a
partial binary. This may take some minutes (depends on machine speed). In follo-
wing runs, TKC loads from the bin file in a few seconds. The partial bin file can
be deleted either from the TKC menu or manually.

6. The graphical user interface (GUI) of TKC toolkits use the ADAMS Standard

Toolbar (from now on this TKC Standard Toolbar will be named TST). Right
clicking on the MSC logo on the right hand side will open a toolkit specific menu.

Loading your first assembly model (A Cone on two discrete beams) is done using the
following sequence of clicks:

Click on the Assembly Loader button in the TST: and Adjust the Assem-
bly Loader Dialog input fields so it is identical to the picture below. The different ele-
ments in the dialog will be explained later in this manual.

Basically it means that you want to load the assembly Cone_Tracker from the Shared
DFM Toolkit Assembly library into the existing Model_1. Before loading this model
assembly, the number of segments in the two discrete flexible tracks can be set using
the Segments parameter of the assembly.

 Description of the TKC Toolbox Page 4

Click on Load in the Assembly dialog to load the assembly into the current model.
The model behaves like it would in plain ADAMS. You can start changing it or run a
simulation directly as you would in a normal ADAMS session.

The assembly dialog is quite loaded with functionality. Much coding has been inves-
ted in this dialog, also because it is completely generic and is one of the 4 main
dialogs used throughout TKC. The image below illustrates the dialog for a cable
based assembly file.

Overview of the functionality of the TKC Assembly Loader Dialog

 Description of the TKC Toolbox Page 5

The TKC Standard Toolbar

The TKC Standard Toolbar (TST) contains a number of often used buttons to manage
objects, data, utilities and assemblies:

From left to right the TST contains:

• The TKC User Logo, an info string is shown on mouse over,

• The C_UDE List button shows the list of existing TKC component objects in the
current model. After selection of a C_UDE, the C_UDE modify dialog will be
displayed.

• The D_UDE List button shows the list of existing TKC component data objects in
the current model. After selection of a D_UDE, the D_UDE modify dialog will be
displayed.

• The Assembly Loader button opens up a dialog to open a special group of TKC
assembly macros. Assembly macros (with file extension mac_assy) contain lines
creating D_UDEs and C_UDEs to create a complete model assembly.

• The Utility Loader button. Utilities in TKC are macros from one of the TKC
libraries. Typically a TKC utility is an enhanced ADAMS macro (with file exten-
sion *.mac) which is loaded dynamically from a macro file browser. Standard
Utilities are a group of utilities that users can put together as their personal
favourite. A stack of icons is presented for more intuitive loading of these utilities.

• The different Toolkit specific dialogs for all loaded TKC toolkits can be displayed
from the button stack stored in the Toolkit Dialogs button. A Toolkit specific
Dialog is a generic dialog containing buttons to display dialogs for creating toolkit
specific C_UDEs, and/or D_UDEs or executing toolkit specific Utilities.

 Description of the TKC Toolbox Page 6

About TKC and TKC-based Toolkits

The TKC toolbox is a set of macros and dialogs defined in the ADAMS/View
command language and dedicated for models in ADAMS. The purpose of the TKC
toolbox is to manage, maintain and document a user toolkit. The TKC toolbox creates
model objects called C_UDEs (for components) and D_UDEs (for data objects). The
definition of C_UDEs and D_UDEs resembles the so-called ADAMS UDEs (User
Defined Entities). A UDE can be considered as a component in a model, possibly con-
taining a hierarchy of other (sub-component) objects. Some advantages of using
macro defined UDEs in models are:
o Allowing for structured modeling,
o Automating the modeling work so more complex models can be created,
o Capturing the proper dynamic modeling of component dynamics in user macros

for certain model building blocks often used in certain companies or projects (i.e.
knowledge capture).

In ADAMS, users can define new UDE types to define a more readable model struc-
ture. In TKC this functionality is further automated leaving the user with simple inter-
active and intuitive modeling tasks, even when creating and modifying UDEs and
user dialogs in a toolkit. Thus, several toolbox development and debugging tasks are
supported in a TKC-based toolkit.

More on TKC UDEs

The main purpose of TKC is to offer an environment in ADAMS that supports the
advantages of using macros for model components and does not restrict users in wor-
king with macro based models. One of the main reasons for not using the official
ADAMS UDE objects in TKC is because they are stored as entities in the ADAMS
binary. For this reason, models containing UDEs can only be loaded into an ADAMS
session that already has the correct UDE definition loaded in the main database
(aview.bin). As this was considered to restricting, the UDE concept was aborted
during the development of TKC. Instead, all C_UDE and D_UDE objects are defined
as standard ADAMS design variables with are flagged by the presence of string
variable children with reserved names (C_UDE_Type and C_UDE_SubType) to
define the component type and subtype (i.e. .Model_1.Strut_YPos.C_UDE_Type and
.Model_1.Strut_YNeg.C_UDE_SubType).

Two main UDE types are defined in TKC: C_UDEs and D_UDEs. The main use of
C_UDEs and D_UDEs will be discussed shortly:

C_UDE or Component-UDE

This type of UDE is used in TKC to store (or contain) equations and objects typically
for model Components. The difference between C_UDEs
and normal ADAMS UDEs is explained by a light bulb
example. In normal UDEs the complete light bulb and all
model components (parts, for- ces etc.) used to model it
would be stored as one single UDE entity (all UDE objects
are children of the UDE in the ADAMS database). Thus, if
there would be a separate part for the glass bulb in the UDE it could be named
MyBulb.Glass_Part. In a light bulb C_UDE, only the definition and interface of the

 Description of the TKC Toolbox Page 7

socket are defined as children of Design Variable MyBulb. The typical use of variable
MyBulb is indeed to be the interface for the light bulb C_UDE, so macros and utilities
can communicate to it and connect it to other C_UDEs (i.e. the fitting for positioning
and input of electric power).
For a light bulb, there might be an input parameter named Reference of type Marker
in the definition of the light bulb C_UDE. This input parameter Reference introduces
the name of an existing marker to light bulb UDE instances. By passing the marker
object Reference to the internal structure of MyBulb, equations can be defined to
create the fitting and the glass of the bulb. All other components of the light bulb
(including the light emitting parts, i.e. the parts that do the work), are defined in a
C_UDE creation macro (with extension mac_cre) using a Comp__Base naming

method. In this method, Comp represents the name of the C_UDE (in this case
MyBulb) and Base is the name of the light bulb component (i.e. the glass part). The
two underscore characters cannot be omitted and the complete name thus links the
(glass part) object to the correct light bulb C_UDE. Thus, if an ADAMS part would
be created for the glowing spiral of the bulb, its name could be defined as
MyBulp__PartSpiral.

D_UDE or Data-UDE

This type of UDE is used in TKC to define model parameters used by C_UDEs. For
the light bulb C_UDE, typical parameters are the geometry of the light emitting
elements, (i.e. the radius of the glass and possibly the resistance and other properties
of the wires). Thus all parameters specific to a C_UDE are stored in one Model object
with a unique D_UDE Type.
For a round shaped Light_Bulb of toolkit EFC (Electric Furniture Components) the
definition code of the Data object is defined as EFC.Light_Bulb.Round.Data.
The Data Type and Data Subtype definition of a light bulb data object are stored in
strings variable children of the light bulb data object:

• .Model_1.Data_My_Bulbs.D_UDE_Type String = “EFC.Light_Bulb” for the
Data Type definition

• .Model_1.Data_My_Bulbs.D_UDE_SubType String = “Round” for the Data
Subtype definition

As was already described in the text, the D_UDE_Type and D_UDE_SubType string
are used as flags to denote that:

• .Model_1.Data_MyBulbs is a D_UDE object with data for one or more C_UDEs,

• The parameters are typically defined to be used by one or more C_UDE objects of
type EFC.Light_Bulb.Round. Different C_UDE model instances, all using the
same D_UDE object will therefore have identical parameters such as radius, color
and other parameter settings. Moreover, changing the data in Data_MyBulbs will
automatically change the characteristics of all C_UDEs using this D_UDE as they
are all parametrically attached to it.

Sub Components

The use of sub-components is a recent extension of the TKC functionality. Further
explanation is available in animations of typical sub-component definition sessions.

 Description of the TKC Toolbox Page 8

TKC features and properties
The functionality and added value of TKC has many usage oriented items. The follo-
wing list shows some of the starting points for developing TKC and thus increasing
the user experience of ADAMS Multi-body simulation users.
o Minimal actions are required to define, register and update ADAMS toolkits.
o In TKC, generic dialogs are used as GUI for managing of C_UDE and D_UDE

instances. In effect, there is no need to create and maintain any user dialogs for
new defined Component types in a toolbox. In case users need special dialogs, i.e.
with cross linking of fields and special objects such as radio buttons, they can be
created and maintained in the same TKC toolkit directory. In general however this
is not advised as the work in designing and maintaining user dialogs can be quite
time intensive.

o All generic dialogs used to manage C_UDE and D_UDE instances are linked to
the on-line help files defined in the toolkit.

o TKC allows for deleting, copying and editing all toolkit components. Thus, new
UDE entity types can be defined and registered by making a copy of existing
UDEs and making the desired modifications. All toolkit edit actions can be done
on-line in an interactive ADAMS modeling session. As all toolkit data is stored in
ASCII files, it can also be done manually. Toolkit functionality is available once
the toolkit name is registered in the tree of TKC configuration files.

o Updating of model modifications in a C_UDE is supported interactively. The met-
hod is based on automated writing of C_UDE model lines to the C_UDE macro
file using the ADAMS macro syntax. This functionality prevents a large part of
the hand-based work (typically starting from copying and pasting from the model
*.cmd file) that is classically required when making a macro in ADAMS. Another
advantage is that the macros are written in a strict syntax allowing for extra checks
when loading and defining the UDEs as model components.

o A large part of the on-line documentation for a toolkit is created by extraction and
re-arranging of ASCII data from the toolkit definition. For this purpose, TKC has
a tool called UDE_Manual and dialogs UDE_Visual and UDE_Manual.

Properties and aspects of a TKC based Toolkit
Definition and storage of a TKC based toolkit is based on an intuitive set of rules. In
the following list of toolkit properties we assume a toolkit named MyKit.

o All toolkit files are in ASCII format in a single toolkit directory. This toolkit

directory typically resides in the TKC_Site directory and is named MyKit.
o The main functionality and list of C_UDEs and D_UDEs in a toolkit and their

respective interfaces is stored in the toolkit configuration file _MyKit.cfg.
o If the name of a certain macro or tool is not included in this file, it is not regis-

tered. Thus, UDE or utility files can exist in the toolkit without being visible to the
user. Only after being registered in _MyKit.cfg, they can be activated from the
TKC dialogs.

o A strict naming convention is applied for all files and objects in a toolkit. In the
example below this is illustrated.

 Description of the TKC Toolbox Page 9

o The type name of a C_UDE object is [MyKit].[MyType]{.[MySubType]}. The
complete type name of a D_UDE is [MyKit].[MyType]{.[MySubType]}.Data. The
{} indicates that UDE objects can also be defined with a blank Subtype.

o The name of the macro file defining this component object is:
 [MyKit]_[MyType]{_[MySubType]}.mac_cre in the root of directory MyKit,

o The name of the macro file defining the data object is:
[MyKit]_[MyType]{_[MySubType]}.mac_dat in the same directory.

o In the creation process of a C_UDE in a model, the typical sequence is:
1. The user selects which sub-type of C_UDE he wants to model (i.e. Rigid or

Flex) and creates the appropriate D_UDE object (or refers to an already exis-
ting model D_UDE object).

2. The C_UDE will be created, referring to the D_UDE. In all C_UDE objects, a
parameter named MyUde.Data_Name holds the name of the D_UDE object
used.

o No limit exists for the number of C_UDE instances referring to a single D_UDE
instance. Thus, a minimal amount of design variables is defined in a model. Also,
all C_UDEs referring to a D_UDE will be updated automatically when design
variables in the D_UDE are changed.

Example Toolkit Component: MBS (Multi-Body Samples)

Suppose a toolkit MBS is defined to store and use simple multi body components. One
of the components is a robot arm fixed to a support frame. Of this robot arm model, a
rigid version exists that is modeled as three un-deformable parts linked with ideal fric-
tionless joints. This arm model is parameterized with a limited number of design
variables and can be used for simple exploratory simulations. Also, a more complex
version (sub-type flex) exists of the robot arm. In this version, the bodies are defined
as flexible using a discrete flexible approach. The flexible structures are linked
together at the arm hinge locations using non-linear spring-damper elements with
friction. This model was actually made after learning the basics from the rigid arm
and was defined by adding complexity to the rigid arm model components. Finally,
the flexible arm model is stored as a separate C_UDE entity so it can be used in
parallel with the simple rigid version.

This results in the following toolkit components:
o UDE entity MBS.Robot_Arm with subtypes Rigid and Flex. Only one C_UDE

type (MBS.Robot_Arm) is defined for the two sub-types (to check: use info on the
UDE object). The reason for this is that the UDE only contains the interface
variables (i.e. Carrier to define the frame to which to connect the arm to). The
users can verify which arm type has been modeled from the UDE variable
.Model_1.MyArm.C_UDE_Subtype. The value of this string type design variable
will either be Rigid or Flex.

o Using a strict naming convention, the arm model elements (parts, forces etc.) are
defined as entities belonging to the C_UDE MBS.Robot_Arm. This means they are
all named

• .Model_1.MyArm__[XX] (for parts, forces, constraints etc.) or

• .Model_1.PartName.MyArm__[YY] (for part children such as markers, points
and geometries)

 Description of the TKC Toolbox Page 10

o The design variables to define geometry and force components (stiffness, damping
etc.) for MBS.Robot_Arm C_UDEs are stored in D_UDE arrays of type
MBS.Robot_Arm.Rigid.Data or MBS.Robot_Arm.Flex.Data. Due to the different
modeling methods used, different parameters are required for the two C_UDE
subtypes (i.e. a Flex Arm requires other variables than a Rigid Arm).

Directory structure, files and dialogs of a typical TKC toolkit

 Description of the TKC Toolbox Page 11

TKC File and Directory Structure

Files and directories for storage of TKC components are defined at five levels:
1. User Project level : where specific data is stored for individual users or projects

(i.e. which toolkits to link, what look-and-feel to apply, a directory with user
model data, a set of project specific utilities),

2. Site level: where toolkits and data directories are defined applicable for all users
in a so-called Site. Typically this is used to share toolkits between colleagues,

3. Shared level: in this level all commonly distributed TKC toolkits and data are
stored. The GUM (General Utility Macros) is stored in this level as well as some
utilities and data files (typically used for samples),

4. Toolkit level: all toolkit functionality is stored in a toolkit directory, the name of
this directory is identical to the name of the toolkit,

5. Code level: to define all code used in the TKC toolbox.

Files and sub-directories in each TKC level will be briefly discussed.

User Project level file and directory structure

The following files and directories are typically present in a TKC/ADAMS working
directory. (Note: most ASCII files mentioned can be text edited and/or exported from
ADAMS):
o _TKC_User_Data.cfg (file) All TKC system information is stored in a tree of

configuration files. This tree starts with the file _TKC_User_Data.cfg. This file
either exists for each ADAMS user in the user Home directory (i.e. Documents

and settings/user) or for each project separately (in the user project work
directory). Besides user specific data, this file defines the TKC system root direc-
tory. On default, this directory contains:

o TKC_Shared: the directory with Shared TKC toolkits and other data,
o TKC_Site: the directory with Site unique ADAMS toolkits (i.e. Company

proprietary information),
o TKC_Code: the directory with all TKC macro and command files

o aview.cmd (file) a standard file name used by ADAMS to load certain data in an
ADAMS session. A standard version of this command file is included in the TKC
package to load the user data and define a button to load the remainder of the TKC
functionality. This file can as well be stored in the user Home directory.

o _Data (dir) Contains model data files to be read by D_UDEs. Data for each
D_UDE can be written and read to files with a fixed extension. User libraries can
be defined as sub-directories of _Data.

o _Assy (dir) Contains assembly files to create complete macro structures in
ADAMS models. Assembly files contain lines defining D_UDEs and C_UDEs
(possibly to create a complete model) in the ADAMS/View command language.
Users are advised to work from assembly files for creating new models. The Make

Assembly utility can create new assembly files from existing models.
o _Util (dir) Contains project specific utility macro files for a range of utilities such

as changing project specific model parameters or commands to automatically
perform tasks (modelling, simulation and post processing).

Site level file and directory structure

The Site level in TKC is used for all macro and data files that are typically used by
ADAMS users in a company. It contains a selection of all TKC Site toolkits. For

 Description of the TKC Toolbox Page 12

confidentiality reasons, users typically receive a minimised version of the Site
directory only containing directories with user specific toolkits.
o TKC_Site (dir) The directory with Site TKC toolkits. User toolkits are stored in

separate sub-directories of TKC_Site. Two *.cfg files are stored in TKC_Site.
o _Site_Data.cfg (file) A configuration file to define all Site specific TKC settings.

The cfg files are readable and are briefly documented using ADAMS comments

o MyKit (dir) all TKC Site toolkits are stored in sub-directories of the TKC_Site
directory.

Shared level file and directory structure

The shared level in TKC is used for all data supplied with the TKC package. This
includes:
o _Assy: (dir) contains shared sample assembly files,
o _Data: (dir) contains a tree structure of data files for a range of C_UDE types,
o _Util: (dir) contains shared utility macros,
o GUM: (dir) A toolkit with a wide variety of General Utility Macros and compo-

nents. Available components are for defining component-to-component contact as
well as a more elaborate spring component.

o CAD: (dir) A toolkit with specific utilities and model objects to support working
with CAD package based geometry data.

o CAMS: (dir) A toolkit defining typical (force based) machinery components such
as pin-in-slots, linear guides with friction and CAMS for different purposes,

o DFM: (dir) A toolkit defining flexible objects defined using a Discrete Flexibility
Method. Available components are straight and curved struts and plates.

o EMO: (dir) A toolkit for Executable Model Objects. Objects in this toolkit have
the purpose to define run- and post processing type data and actions in a model.
Using EMO objects, users can include an automated simulation and reporting
processing structure in a model.

Toolkit level file and directory structure

Depending on toolkit functionality defined, the following files can be found in the dir-
ectory of a TKC toolkit:
o _MyKit.cfg (file) a toolkit configuration file defining all toolkit components.
o _MyKit.bin_[Vers] (file) the toolkit partial binary for storage and rapid retrieval

of all toolkit definitions, utilities and dialogs. As ADAMS binaries are not always
version independent, the extension is completed with a lower case ADAMS
version string (i.e. 2013_1 or 2014) denoting in which ADAMS version the binary
is defined.

o Bitmaps (dir) TKC supports automatic creation of bitmaps on buttons and other
applicable GUI elements. Each C_UDE and D_UDE creation button and toolkit
tool button will be illustrated with the appropriate bitmap in case a bitmap file
exists. The format used for bitmap files in the ADAMS GUI is the *.xpm ASCII
format, which can be created with programs such as Icon_XP. The base names of
the bitmap files is identical to the base names of the *.mac_cre macro files.

o Help (dir) The directory where TKC expects on-line help files to be. In the current
TKC version, file MyKit.pdf or file Mykit.txt will be loaded if available.

o *.mac_cre (files) Macro files for definition of C_UDE types. The files are defined
in a strict syntax to allow for automated checks on macro parameters. UDE defi-
nition macros are seen as products of the TKC toolbox. Thus, documentation of
the macro contents has a high priority. The *.mac_cre and *.mac_dat files can be

 Description of the TKC Toolbox Page 13

defined automatically from a model. The readability of the macro is even main-
tained while making changes to C_UDEs and D_UDEs. Thus, the macro files are
quite useful for (automated) documentation purposes.

o *.mac_dat (files) Macro files for definition of D_UDE types. D_UDE instances
are data arrays in a model. The children of a D_UDE represent design variables
(i.e. mass, stiffness, positions) to be used by C_UDEs. The following naming con-
vention is used for the macro files:

o [MyKit]_[MyType]_[MySubType].mac_cre to define the C_UDE,
o [MyKit]_[MyType]_[MySubType].mac_dat to define the D_UDE.

o *.mac_del (files) The deletion of a C_UDE instance may result in errors when
objects are deleted that are referred to in other model objects. To prevent this, an
optional *.mac_del macro file can be defined to disconnect the C_UDE instance
from other model objects prior to its deletion.

o Dialogs: (dir) Utilities in a toolkit can use dedicated dialogs. The required *.cmd
file to define the dialog is stored in the dialogs dir. (i.e. the dialog for the utility
MDT.MyUtil is defined in the file MDT_MyUtil.cmd).

o Util (dir) Toolkit utilities are macros to perform certain tasks (i.e. setting initial
velocities to a selected range of model entities).

o SubComp (dir) A directory containing *.mac_* files for sub-components defined
in this toolkit. Sub components are a further level of model building blocks.

o Data (dir)
o Assy (dir)

TKC System level file and directory structure

A selection of the files and directories in the TKC toolbox is listed. Users typically
will not see or edit these files, unless for code reference or modifications to the TKC
functionality. Note: no guarantee of proper functionality can be given after users have
made modifications to these system files without consent of the TKC developers.

o TKC_Code The library with all TKC macros and dialogs,
o TKC_Code/TKC The core TKC macro functionality.
o TKC_Code/TKC/_TKC.Bin_[Vers] A partial binary file with all TKC macros,

dialogs and other functionality. The file can be created, deleted and updated in any
TKC session. You can delete the TKC partial binary by: TKC, Lib Management,
and Del TKC Binary. The binary file can also be deleted manually. After re-
creating the binary file, all TKC core functionality will be updated from all ASCII
based macro files.

 Description of the TKC Toolbox Page 14

The TKC Graphical User Interface (GUI)

The Toolkit Dialog

All Functionality of a TKC toolkit is stored in a generated toolkit dialog box.

TKC Shared Discrete Flexibility Toolkit dialog Box

The picture above is a summary of the functionality stored in the DFM shared TKC
toolkit. The red arrows denote the response of the dialogs after a left-click on the
toolkit bitmap (horizontal-vertical swap) and after right-clicking the button stacks for
components, component data and utilities. Each bitmap in the button stacks shown
activates creation of a component (C_UDE Stack), creation of data for a component
(D_UDE Stack) or opening the dialog for a utility macro (Util Stack).

ADAMS button stacks have the following features:
o An ADAMS button stack GUI element can be recognised from the small black

triangle at the right hand side bottom.
o When the right mouse button is used on top of a button stack, a matrix of buttons

is shown.
o Buttons can have labels or bitmaps stored in the button stack.
o The user can select any of the buttons in the matrix, thus activating the commands

stored under the button.
o After activation of a button of a button stack, the stack shows the label or bitmap

of this most recently activated button.

 Description of the TKC Toolbox Page 15

The generic Component or C_UDE dialog

Two generic dialogs for creating, deleting and modifying C_UDEs and D_UDEs are
at the core of TKC. Normally, when developing new toolkits, programmers will not
spend much time in tuning and tweaking a dialog of yet another entity. This is the
main reason why TKC dialogs are created in a generic way. As only two dialogs exist
for managing any C_UDE and D_UDE, much effort was invested in optimizing these
dialogs. Moreover, different clones of the dialogs can be opened in parallel. Thus,
users can manage different types of UDEs (or even the same UDE) simultaneously.

Quick help is available whenever possible. While using the dialogs, many of features
will already be clear from the quick help while hovering over the respective area.

The different objects in the dialog will be discussed briefly:
o Title Bar Dialog header adjusts to name of C_UDE type to be defined.
o Help Normal on-line help on the toolkit is available via F1, the help button opens

up help on the dialog itself, about TKC and the toolkit structure,
o Bitmap If a bitmap of the C_UDE type is defined, it will be shown here,
o Info Buttons Used to paste user, time or date info to the Info field

o Info Labels For printing information on the creation process. Color indicates new
(yellow) or existing objects (green),

o Comp. Data The Data button can be pressed to open the D_UDE dialog to create
or use a data UDE instance. If the D_UDE dialog is used to change the sub-type,
the Title Bar will reflect this change,

o Name Field Input field for the name of the new or existing C_UDE. Use the s
button to select an existing C_UDE.

o Input Labels The labels of parameters reflect the parameters base names,
o Set Button In case of a new C_UDE, the label of this button is Create, for an

existing C_UDE the text is changed to Set,

o Del Button Deletes the C_UDE. If provided, a *.mac_del deletion macro will be
called prior to deleting all C_UDE children.

 Description of the TKC Toolbox Page 16

The generic Component Data of D_UDE dialog

Besides the C_UDE dialog also a generic D_UDE dialog is available in TKC. Similar
remarks apply with respect to the applicability and cloning features of this dialog.

Generic TKC Data UDE dialog

 Description of the TKC Toolbox Page 17

Typical aspects to consider using UDEs and macros
o Some kind of version control must be used (which version of a macro works with

other macros). In TKC, ADAMS models can be stored in assembly files contain-
ing only creation calls of UDE components and data components.

o Users tend to hesitate from defining extra model components in a macro-based
model. While the macro part of the model can easily be re-created, the additional
model components are much harder to re-create in an updated model. In TKC, the
complete model can be exported automatically to an assembly file. This file is
written in the ADAMS cmd language and is actually an ADAMS macro. The
Non-UDE model components can either be hand-added to the assembly file or can
be added in more or less automated methods. Depending on the number of objects
defined different methods for capturing this information can be applied.

 Description of the TKC Toolbox Page 18

Placeholders used in this documentation
The following placeholders are used in the description of the C_UDEs and D_UDEs:
o [..] Represents a placeholder. Typically used as an input parameter of a UDE;
o [U] Placeholder to define the name of the UDE entity;
o [D] Placeholder to define the name of the UDE Data entity;
o [M] Placeholder to define the name of the model, in most cases the model name

has been removed for readability purposes;
o LRT shortcut to define the (often used) Loc_Relative_To(…) expression;
o ORT shortcut to define the (often used) Ori_Relative_To(…) expression;

 Description of the TKC Toolbox Page 19

Creating and Using a new Toolkit Component

Introduction

In this Chapter, the creation of a new TKC component (or C_UDE) will be explained
step-by-step using the example of a simple rigid motion driven manipulator arm. A
number of steps will be used to illustrate the complete process. Where possible and
applicable the work of the previous step will be used.
1. Creating the component as a non-parameterized model object, requiring a

minimum of actions.
2. Parameterization of the component in a default ADAMS method. Different para-

meterization methods are possible in ADAMS. The example will also illustrate the
advised method for model parameterization.

3. Defining the component as a registered TKC C_UDE with its D_UDE for data
storage. By renaming objects defined in 2), existing objects will be captured into
the model entity of the C_UDE. Finally, the C_UDE (*.mac_cre) and D_UDE
(*.mac_dat) creation macros will be defined by automated storing of the model
equations into a text editable file.

4. Once the C_UDE is registered (and tested) we can define a complete TKC assem-
bly structure (i.e. a complete Base-Arm-Hand robot) on-the-fly and use the
automated assembly extraction to create the version independent assembly macro
file.

Description of the Component

The component description reads as follows:

• A marker is defined on an existing Carrier part at the location of existing marker
Reference under an angle about the z-axis of Reference.

• Part Arm_Part is defined as a simple rigid link geometry pointing from Reference
to the end marker called Ref_EndPoint. Length, width and thickness of the link
will be parameterized in a later phase.

• A Revolute joint and a Motion are defined at the origin of Arm_Part between
Arm_Part and Carrier

Note: The pictures in this chapter were generated in an older version of TKC. Please
replace all instances of Arm_ by Arm__ as TKC now works with a double underscore

to distinguish between C_UDE object name and C_UDE children.

 Description of the TKC Toolbox Page 20

Building the non-parameterized component

In the first phase, preliminary naming will be used. In a later phase, when capturing
the components into the C_UDE, you will rename certain components. At that point,
an explanation will be given why and for what purpose this is done. Some steps in this
phase may seem quite superfluous and over-complicated but the merely serve to
illustrate creating the most readable and minimal component.

• Load the TKC toolkit, use setting MKS and set the grid to Fix to View. Rename
the model to Mdl (just to match with text following)

• Create a marker on Ground, for convenience use orientation = view (i.e. z-axis
perpendicular to the view). Name this marker .Mdl.Ground.Ref_Robot.

• Create a Link, starting from Ref_Robot, pointing to the right. Rename the new part
to Arm__Part and the link to Arm__Part.Shape (just to illustrate the relative un-
importance of geometric entities in ADAMS).

• Create a revolute joint with Arm__Part as first part and Ground as second part.
Rename the joint to Arm__Revolute, and inspect three markers at the joint
location. Two markers are used by Arm__Revolute (one on Ground and one on
Arm__Part. The third marker is the I_Marker of Arm__Part.Shape. A powerful
method for verifying this (please do so) is by retrieving the info of Shape and
Arm__Revolute and/or opening the respective modify dialog.

• To obtain a clean model, we want to minimize the number of markers used. We
can do this by using the I_Marker of Arm__Revolute also as I_Marker for Shape.
This will be done in two steps:
1. Rename the I_Marker of Arm__Revolute to Arm__Part.Reference and the

J_Marker of Arm__Revolute to Ground.Arm__Reference
2. Open the modify dialog for Arm__Part.Shape and replace the I_Marker used

(probably called Arm__Part.Marker_2) by Arm__Part.Reference. Now
marker Arm__Part.Marker_2 is superfluous and can be deleted.

• Rename the J_Marker of Arm__Part.Shape to Arm__Part.Ref_EndPoint. In a later
phase this marker may be used by other components, i.e. as reference marker for
the next mounted manipulator arm.

• Create a motion Arm__Angle on Arm__Revolute and prescribe the function for the
motion displacement as 30.0d*STEP(Time, 1.0,0.0, 3.0,1.0). The input angle of
the Arm will change using a polynomial function from zero degrees to 30 degrees
from time is one seconds to three seconds.

 Description of the TKC Toolbox Page 21

• The figure above shows an overview of the model (Arm__Part components in red,
Ground markers in green, Arm__Revolute in Cyan and Arm__Angle in yellow).

• Now the arm component is ready and we can test its functionality. Therefore: run
the model for 5 seconds and check if indeed we can see the arm rotate over 30
degrees counter clockwise. If these are the only components in the model, the
number of Degrees of Freedom (use the Gruebler Count) must be zero.

 Description of the TKC Toolbox Page 22

Parameterization of the component structure

After the first phase, the component is defined in a reasonably minimal (no super-
fluous markers) and readable (intuitive use of object names) method. However no
parameterization is applied yet, so no design study can yet be performed with it.

The following steps are required to fully parameterize the component:

• Ground.Ref_Robot will serve as a so-called Master to define the base location of
Arm__Part. Therefore, location and orientation of Ground.Arm__Reference are
parameterized to Ground.Ref_Robot using the required buttons in the main tool-
box. In the figure below the steps required for parameterization of the orientation
are illustrated. Especially when you are not yet experienced in the ADAMS
parameterization method, check the results by opening the Slave Marker modify
dialog (as illustrated below).

For understanding compare the definition of marker Mdl.Ground.Arm__Reference

with a non-parametric marker.

 Description of the TKC Toolbox Page 23

See the definition of the example marker Mdl.Part_3.Marker_7 above. Notice
which fields are not grayed out and the numbers (without brackets) in the
Location and Orientation fields. By definition, the numbers defining the
location and orientation of a non-parametric marker are global vectors and
follow the defined ADAMS/View units for length and angle. As soon as field
values contain text between brackets, ADAMS/View will assume an expres-
sion. By definition, ADAMS/View expressions for location and orientation
produce local vector variables.

• Marker Ground.Arm__Reference will serve as local reference for Arm__Part and
its components. Therefore, in a similar approach as above, Arm__Part.Reference
will be made a Slave to Ground.Arm_Reference. The result is illustrated in the
figure below.

• Effectively, marker Ground.Arm__Reference serves as global origin and marker
Arm__Part.Reference as local (part-owned) origin for part Arm__Part. Working
in this sequence, and using Arm__Part.Reference where possible as origin for
objects in Arm__Part is the advised method for parameterization in ADAMS but
is also an intuitive top-down method in general in a system approach to define a
structured parameterization of model components. As an example of the advan-
tage to use a part-owned origin: a copy of Arm__Part will result in a new part
Arm__Part_2 including all its child markers and geometry. All one has to do to
fix it to another global position is to make Arm__Part_2.Reference a slave to the
new global reference.

• Continuing the process we will now make Arm__Part.Ref_EndPoint a slave to
Arm__Part.Reference. At this point we will define the length of the link with the
design variable .Mdl.Len_Arm. The required basic steps are illustrated:

o Use the current length of the link and make Arm__Part.Ref_EndPoint a
slave to Arm__Part.Reference use option Maintain in the Main Dialog
Lower window to freeze to the current value of the relative distance. In the

 Description of the TKC Toolbox Page 24

illustration below the distance between these markers appears to be 0.7
meters. As a result, Ref_EndPoint is defined in the frame of
Arm__Part.Reference at vector ({0.7,0.0,0.0}) m

o Define design variable .Mdl.Len_Arm as illustrated below. It is strongly

advised to use units=length. Defining the type of length units (in this
example Standard Value = (0.7m)) is not required but may increase the
readability of the model settings. To avoid confusion we will define the
value equal to the value found in the parameterization of Ref_EndPoint.

 Description of the TKC Toolbox Page 25

• Now use Len_Arm in the expression for the location of Ref_EndPoint .
This can be done using the Expression builder, or simply by text editing
the expression.

• You can check the expression by changing the value of Len_Arm, if all is

correct, the length of the link must change appropriately.

• In the same way we will define design Width_Arm and Depth_Arm for the
size of the link

• Variable Density will be used to define the total mass and inertia of
Arm__Part.

• Variables T0_Motion, Dt_Motion and Amp_Angle are defined to parame-
terize the Run-Time function for motion Arm_Angle.

• Finally, the component kinematics is completed with initial angle Ang_Init
of Ground.Arm__Reference relative to Ground.Ref_Robot. Notice that, as
ADAMS uses Z-X-Z Euler angles for transformations, Ang_Init is the first
component of the relative angle vector.

• The last phase of the geometric parameterization of Arm__Part is also

the most cryptic: we will parameterize the local part reference frame
(lprf) to coincide with the location and orientation of marker
Ground.Arm__Reference. Although is not mandatory to do so, there is
a number of good reasons to keep the lprf close to the cg of a part.
Another aspect to note is that parameterization of the lprf is usually the
last operation to perform; doing so before parameterizing part child
geometry may result in a geometry mess. The syntax to make the
Arm__Part lprf a slave to Ground.Arm__Reference is listed below.

 Description of the TKC Toolbox Page 26

• The usage of the different design variables is illustrated below.

• Below, the ADAMS Table Editor tool is used to illustrate the
definition of the different design variables mentioned.

At this point, the component geometry, inertia and kinematics are fully para-
meterized. Check and verify correctness by changing variables and visually
checking and/or performing simulations. For the model at hand, simulations
must be performed without any warnings at any step in the simulation process.
Once this has been verified, the model is considered as successfully para-
meterized.

 Description of the TKC Toolbox Page 27

Register the Component as a TKC C_UDE

Up to this point, all actions performed have been standard ADAMS. We may have
used some of the functionality in TKC (such as grid and/or icons displaying shortcuts)
but we did not create anything non-standard ADAMS. By registering the robot arm
component as a TKC component and its parameters as TKC data array we will extend
the (re-)usability of it.

The method for finally performing the registration of the component can vary from:

• A completely text based approach, i.e. editing all required ASCII files and incre-
mentally reloading the mother toolkit until all functionality is correct.

• To an almost completely GUI driven approach where model components are
extracted from the model into macros for the component to be defined.

In this example we will use a mixture of both. The explanation will be on ad-hoc
basis, mainly focusing on the principle of the process and not on details of the imple-
mentation.

In publishing the component to TKC the following actions are performed:
1. Definition of the interface of the component so TKC generic dialogs will be dis-

played with the correct number and type of input parameters (see marker
Reference and part Carrier). This can also include additional actions that must be
performed when creating, modifying or deleting this component.

2. Creation of the macro required to create an instance of the component (C_UDE)
in the active model and a data macro to create an instance of the data array
(D_UDE) required by these C_UDEs. The syntax of these macros will be shown
for the example of the Robot Arm.

Registration of the Component and its Interface

For step 1. we will use text editing to add the RobotArm to an existing Toolkit. The
required lines will copied from an existing component and adjusted where needed.
The final definition for the new RobotArm component is included in the figure below,
which is extracted from the configuration file _ATS.cfg of the ATS toolkit.

 Description of the TKC Toolbox Page 28

Implementing the functionality in this cfg file is done by reloading the toolkit which is
done using the TKC Control Dialog. The figure below lists the steps for

1. Opening the TKC Control Dialog,
2. selecting the Toolkit to be Refreshed and Reloaded and
3. Refreshing and Reloading ATS

Basically refreshing means that all binary stored data for ATS is deleted which is
required when new toolkit functionality must be available in a session. When all
syntax rules are followed correctly, the ATS Toolkit Dialog will be displayed with
button stacks for the different available components in ATS. The functionality of the
ATS dedicated Dialog is comparable to that of the ADAMS Main Toolbox.

Definition of the Component Creation Macros

As mentioned, all syntax errors in the cfg file and/or in the available macro template
are reported in the TKC session. For the RobotArm two macro templates must exist:
RobotArm_Rigid.mac_cre and RobotArm_Rigid.mac_dat which can be verified from
_ATS.cfg as RobotArm only defines the subtype Rigid. Both macros fully apply to the
ADAMS/View command language syntax, and the templates are listed below.

The following rules apply to the macros:

• The *.mac_cre macros have generic and specific parameters in a strict sequence:

 Description of the TKC Toolbox Page 29

1. The_Model: Name of the current model,
2. Name: Text string with the base name of the C_UDE to be defined,
3. Data_Name: Name of the D_UDE model object to be used by the C_UDE.
4. … The remaining parameters of the macro are the specific input

parameters for the C_UDE, they must be listed in the INPUT_NAMES
definition line in the toolkit cfg file. For the RobotArm these inputs are
Reference and Carrier.

• The *.mac_dat macros typically only have one parameters representing the name
of the D_UDE model object (defined as a parent design variable). A completed
*.mac_dat macro will typically contain definition lines for all design variables in
the D_UDE array structure.

Now we have defined RobotArm as a new (but completely empty) component of the
toolkit ATS without any component data whatsoever. We will add contents (i.e. code)
to RobotArm by encapsulating the existing parameterized model object into a
RobotArm model instance and storing this as the new definition of a Rigid RobotArm
structure and data for a Rigid RobotArm.

The encapsulation starts by defining an empty RobotArm. To avoid naming errors, as
the model code extraction is based on object names we will define a D_UDE named
DDD and a C_UDE named CCC (of course you may also use other unlikely names).

The step-by step creation of DDD and CCC is shown using the figure above:
1. Press the button on the ATS dialog to open the generic C_UDE dialog,
2. Enter the names for CCC and DDD to be defined,
3. Press the Data button to open the generic D_UDE Dialog,
4. Verify the right Sub-Component type, in this case only Rigid exists,
5. Create the D_UDE DDD, the labels on the D_UDE dialog will change, here

yellow means a new object and green means an existing object,

 Description of the TKC Toolbox Page 30

6. Complete the input fields for CCC. To encapsulate the existing arm, use the same
inputs: Reference = .Mdl.Ground.Ref_Robot and Carrier = .Mdl.Ground,

7. Create the C_UDE CCC.

Both on the C_UDE and on the D_UDE the label on the Create button will switch to
set to denote that the object indeed exists and can be updated when pressing this but-
ton (in general this is not used often).

Next, the figure below shows the presence of .Mdl.CCC and .Mdl.DDD. Both objects
can be edited (i.e. the C_UDE or D_UDE dialog will be opened) when clicking the
respective buttons on the bottom main toolbar. A tree view of objects in CCC and
DDD is listed in a selective view of the database navigator on all design variables
(Build, Design Variable, Modify) in Mdl. From the child variables of CCC and DDD
we can extract some of the functionality of TKC. Basically, TKC C_UDEs and
D_UDEs store their respective properties using object and/or string child variables.

The final publication of the desired macro code is done in the following steps:

1. Renaming objects to become part of CCC.

The following renames are done:

• .Mdl.Arm__Part � .Mdl.CCC__Part

• .Mdl.Arm__Revolute � .Mdl.CCC__Revolute

• .Mdl.Arm__Angle � .Mdl.CCC__Angle

• .Mdl.Ground.Arm__Reference � .Mdl.Ground.CCC__Reference

Although this procedure may seem a bit cryptic, actually it is very structured:

• All objects belonging to CCC must have a base name starting with the string
CCC__.

 Description of the TKC Toolbox Page 31

• For all model objects in the top level of a model, such as parts constraints,
motions, forces and measures this is the string following the model name.

• For markers and geometries, or in general children to parts, either the base
name must start with CCC__ (in case the parent part is not inside the C_UDE)
or the part name starts with CCC__.

2. Verify if the encapsulation of Model objects into CCC is complete and successful.

A dedicated TKC button is defined in the main Object Pulldown. Using this
button one can manipulate any TKC-based model objects. The procedure to access
this functionality is shown below.

The figure below shows two general methods to manipulate a TKC C_UDE:
a) by opening the C_UDE modify dialog (lower 1), making a right mouse click in
the Name field (2), doing a pull down walk-through until the C_UDE object can
be hidden or displayed or manipulated in another way (3, 4, 5).
b) by right clicking on an object in the model view belonging to a C_UDE (upper
1), walking through the pull down menus one will obtain the same function (4, 5) .

Notice that, as in ADAMS standard, many of the TKC manipulations are using the
Select List. Thus, opening the Select List Manager (6) will show all objects contained
in C_UDE CCC.

Now all model objects required for the Robot Arm have been encapsulated into CCC
and will be treated as any other TKC C_UDE child object. Next we will encapsulate
all necessary design variables into DDD. Effectively, in the ADAMS session we will
use the Edit D_UDE Dialog and import the design variables into DDD. The required
actions are shown in the figure below:

 Description of the TKC Toolbox Page 32

1. Open the TKC Control Dialog to
2. Switch to Expert User Mode to show the Edit button on the D_UDE dialog,
3. Open the D_UDE Dialog for DDD and
4. click on the Edit button to edit the design variable children of DDD,
5. In the Edit D_UDE Dialog variables can be listed, added, deleted and type and

comments can be modified,
6. Click on Import and browse for the variables used by CCC, after successful

import, the D_UDE Dialog will directly report the variables as children of DDD.

Effectively, variable .Mdl.Len_Arm will be made a child of DDD by renaming it to
.Mdl.DDD.Len_Arm. All properties of the design variable will be maintained and can
be edited at will.
Also you can add additional design variables to complete the RobotArm. For example
we will add variable .Mdl.DDD.Color to define the color of a certain instance of the
RobotArm. The steps for defining and using this color variable are explained below.

1. In the Edit D_UDE Dialog Type Color in the Short Name Field. Set the type

selector to object and enter the object value .Colors.Yellow to define the color

 Description of the TKC Toolbox Page 33

properties. For extra documentation you may add a leading string “T=Color |” to
the variable Comments value.

2. Press the Cre button to finally create the color variable,
3. As the Update toggle button is true, automatically the D_UDE Dialog is updated

with a line with properties for .Mdl.DDD.Color,
4. The object variable .Mdl.DDD.Color can now be applied to the objects in CCC by

right clicking on an object and opening its Appearance Dialog. The name of the
Color can be copied and pasted from the Long Name field value in the Edit
D_UDE Dialog.

Formatted storage of the D_UDE data structure to a *.mac_dat file is performed by
pressing the Store button in the Edit D_UDE dialog. The sequence of the variables in
the data file can changed by hand editing (i.e. to obtain a better grouping of variables).
The info panel displays messages about the name of the *.mac_dat file and the
number of variables stored.

At this point, the C_UDE equations for the Robot Arm can be exported to the macro
file. This requires the following steps:
1. Open the Toolkit Creator Control Dialog,
2. Switch to TKC Expert User Mode,
3. In Expert User Mode, open the C_UDE Dialog which now shows an additional

Store button

 Description of the TKC Toolbox Page 34

4. Click the Store button to activate the macro export.
5. The Info dialog reports textual info on the export process. The info lines indicate

the place holders used and the number of model objects exported to the macro.

 Description of the TKC Toolbox Page 35

The formatted text in the body of the C_UDE creation macro is listed below.
Please replace all instances of $‘Name’_ by $‘Name’__

After some text simplifications, the relevant parameters of the macro are color
highlighted to illustrate their use for the definition of objects in the component.

