Debug Model Assembly from Assy File

Table of Contents
1: Introduction

2: Syntax of Blocks in a TKC Assembly File

3: Load and Check the Model_Data Assembly Block

4: Load, Delete and Update Robot Components

5: Create Load_Contacts and explain Contact Interface
6: Generic versus Specific Components

7: Perform Simulation and Summary

1: Introduction

In this section of the TKC manual we will illustrate the use of the TKC Assembly loader to debug an
Assembly. Assembly files can be separated in action blocks, each block represents a separate part of
the complete Assembly model.

This functionality allows users to:

1) Load an Assembly file piece-by-piece;
2) Test the model in the current state of completion, including deleting and recreating objects;
3) Continue loading the assembly file to a next block;

Using this approach, the assembly is functionally used as a model creation template which is used to
check models and strongly supports interactive improvement of toolkit based model components.

2: Open Assembly Loader Dialog

The generic Assembly loader is opened from an empty model. The dialog Assy File field is set to
Test_Robot and the Assy_Lib List option is set to User to allow loading this specific Assembly. The
contents of the Assembly file can be printed by pressing the Assy_File button or by opening it in any
available text editor.

The image below illustrates the syntax of denoting Blocks in the Test Robot Assembly file. The marked
lines 21 and 48 are the start and end lines of the Model Data Block. Line 48, the start line of block
Robot is automatically the end line of the previous block Model Data.

The minimal syntax of a valid Block Line is: ‘! @Block Block_Name ! Block Comment’

Note 1: To ADAMS, a Block Line is a comment line. Blocks are parsed using a separate Python parser
to create a dedicated Assembly file which executes the block dependent commands.

Note 2: Line 35 is not a valid Block Line due to the missing ‘@’ character before the Block keyword.

TKC Manual Debug Assembly from Assy File Page 1

5 '
16 !END OF PARAMETERS

17 ! BEGIN MACRC § Self

=== @Block Model Data ! Modsl Setup and UDE Data ObJjects =======

'
'
r
'
'
r

TEC Load Utility File

TEC Load_ Data Data_ Name File = "Default"”

'

TEC Create_D UDE HName = File
TEC Create_D UDE HName = File
TEC Create D UDE HName = File
TEC Create_D UDE HName = File

TEC Create D UDE HName

File

'
1
! === Block Sack_ﬂ-:)n;
'
i

TEC Set_Marker Marker =
a5 Loc = "({0.0, 0.0

40 ori = "({0.0, 0.0, ©

42 TEC Set_Marker Marker =
43 Loc 50
34 Oori

"{{670.0, 50.0

"ii0.0 1.0
0.0, 90.0

'
'
'

48 ! === @Block Robot ! Load the Robot Components ===
i
T

TEC Create_C_UDE Name
Type
Data_ Name
Inputs

[

oo ol

. T BT

During the execution of lines in an Assembly file, the criterium for running code inside a Block is the
absence (as a model object) of the first TKC object listed inside a Block.

Wl Assembly ‘Test Robot’ e

Model | Tezt_Madal ’f
Assy File | Test_Robot User j "

[UserpTest Robot will Abor After Model_Diata

The Modsl | Test kaodel

LnadhrJ Biocks '-l rl.-'h:-de |_Diata 'rl o ,l

3: Load and Check the Model _Data Assembly Block

Thus, the code assumes block Model _Data to be completed when object Data_Base (see line 27) exists
in the model. The code will then jump to the start of the next Block Robot which will be executed only
when no model object Base is found. The image above shows the Assembly dialog before creating the
model objects until the end of the Model_Data Block. Obviously, in the Model _Data block, no TKC
components are defined in the model but only data elements for the model components.

TKC Manual Debug Assembly from Assy File Page 2

Load |[Biocks] [Mosel Data

Growse Groups | Fikters |

[~ Component Objects
%12 Bodies
11 Connectors

| & Mobons
41 Forces
b Elements
41 Measures

| 31 Design Variables

| 1+ Simutations

| #1 Results

i 4 Al Other

Search

e |

Apply | Parent | Chidren | Modify [~ Verbose Clear | ResdfomFile | SavetoFie Close

117:24:34) - === Start Loading Assesbly 'Test Robor! ==

Zocaping after Block: 'Model Daca’ of Assembly with d Code Blocks, § Data Objectz and § Compomente

Day
o
Data
Data
oa
Das

(Usez] /Test

The above image shows the process during and after executing this Block: (1) after executing the
Assembly dialog, (2) a list of data objects is created which can be edited by (3) clicking on the data
stack icon to show the (4) Data objects selection menu. Markers Ref Model and Ref Load used as
references for the robot Base part and the Load respectively were also defined in this code block.

4: Load, Delete and Update Robot Components

Similarly, model components required for the robot parts are defined by the Robot Block of the
Assembly. While designing or updating the macro code of the RCC toolkit, users can use the Block
functionality as Follows: (1) Load objects from an Assembly, (2) set User Mode to Expert_User in the
Control_Dialog, (3) delete a chain of components, (4) edit RCC macro files or add functionality and
finally, (5) re-create components in the same sequence as listed in the Assembly file.

o

Flad™O % @EHE b, SRR o £ G

TKC Manual

1 Forces 1 Elements] Design Exploration \ Plugins 1 Machinery} Simulation \ Resu\ts}

L[@Po Bue
Né RO S8

lexible Bodies Construction Booleans Features

Load ‘ Re\aad‘ Un\aad‘

Refresh | Dialog
| [nfa_Panel

e -
Model || Test_Model /
Group |Loaded = q‘/ Assy F\\e‘ Test_Robot User ~ '

olkit [RCC - A7 4
2

[User)/Test_Robot will Abort After Robot
| Expert_User

odel [Test Model

Load ||Blocks +||Robot M ﬁ

5

|| Infa_Mode

-

<[] s

-‘ Test_Model ArmGen
Data [Test Model Data_ArmGen
nfo ||

Reference | Test_Model Base_Prt_Pivot Ref Robot_Arm

Cartier [Test_model Base_Prt_Pivot

Component: ‘ArmGen’ has § Sub-Components

Set | Del | Build
W RCC Gripper Generic
<> Help

Name | Test_Model Gripper

Data || Test_Model Data_Gripper
ifa [

Refersnce | Test_Model ArmGen_Prt_Lower Ref_Low_Top

Carrier [Test_Model AmGen_Prt_Lower

B OEPOL0®

45 |

Note 1: In the robot model, object Gripper is connected to object ArmGen. Therefore, to update the
definition of ArmGen we first have to delete Gripper and then ArmGen and recreate these objects in

ponent: ‘Gripper has 0 Sub-Components
Create | Del | Build

W Animate [lcons
M Ribbon [~ Debug

x|

TKC Manual Debug Assembly from Assy File Page 3

reverse order. Meanwhile, the component dialogs must not be closed as they contain the parameters
of components.

Note 2: In the image shown, Gripper is deleted which is reflected by the yellow Name label on the
dialog. The fields data in the dialog are remainders from the previous instance of Gripper.

Note 3: See section Generic versus Specific Components for more info on the Generic Sub-Type

5: Create Load_Contacts Block and explain Contact Interface

Selecting the Load_Contact list option and executing the Assembly dialog will start the creation of the
Load object and the contacts between Load and Gripper. The textual info generated by the Assembly
loader shows that three contacts are created.

The method used for the definition of contacts is as follows:

Both Load and Gripper define some Contact Interface objects by a call to the TKC Utility
Manage_IFace embedded in the component topology macro or sub-components.

For debugging, interface objects information can be listed with TKC pop-up menus on components
by selecting: -Info, -Interface. In most cases, the lists can also be retrieved from a component child
object (such as part Gripper__Prt_Hand)

The lists show geometries in a labeled contact group of the component. In the image below, a
contact list labeled Grasp is shown for the Gripper object containing three geometries on parts
Gripper__Part_Hand and Gripper__Prt_Thumb.

2] tep) > === No Input IFace Vars for : Gripper
#_Model Grpper

fy ;_Moml.Dn_Gnmv

> === No OQutput IFace Vars for : Gripper

> =m=== Nr. of Contact Interface Types: 1

| Test_Model ArmGen_ Prt_Lower Ref_Low_Top

———— 3 Type: Grasp Interfaces Stored as: Object_Names we=
[Test_Model AmGen_Prt_Lower

1 Grippex_ Prt_Hand.Gec_Hand
2: Gripper_ Prt_Thumb.Cec_Thum Base
3 Gripper_ Prt_Thumb.Gec_Thum Tip

R Bire 50©

v Animate [lcons
¥ Ribbon I Debug &

In the Test Robot Assembly, a GUM.Contact 2UDES contact component named Cont Load is
defined between contact group Grasp of Gripper and contact group Tube Shape of Load. Per
default, all objects in Grasp will contact all objects in Tube_Shape. The creation dialog of Cont_Load
is shown in the image below showing the required input parameters to the component.

TKC Manual Debug Assembly from Assy File Page 4

L]
<|>| Help
Lo I Test_Model Gripper |G i] “Tig W Cont_Load of Type GUM (ﬂ}tnc!m — X

Data_|[Test_Model Data_Gripper ™ I i <|>| Help|

Info I illl il -I Test_Model.Cont_Load _SJ L
‘ Data |[Test ModelData Contacts 5| ",
Reference | .Tas1_ModeI‘Am\Gen_Prt_LowenRef_Lan Ml i] ﬂ ﬂ

Carrier | Test_Model AmGen__Prt_Lower
Ude One | _Test_Model Gripper

Group One IGrasp
Range One IAII

Lo

Component: ‘Gripper has 18 Sub-Components

< I Ude Two | Test_Model Load s

'_]_>J Help Group Two ITube_Shapo

| Test_Model Load ﬂ & Range Two IAII
Data I.Test_ModeI.Data_Load i] A Align Seg [AII
Ilfo“ Measures I Sum_of Fm :]

Component: ‘Cont_Load has 0 Sub-Components

Reference | Test_Model ground Ref Load

R re 50@

¥ Animate I Icons -
W Ribbon [~ Debug @S

Component: 'Load' has 5 Sub-Components

In case parameters Range [xxx] and Align_Seg are set to values not equal to ‘All’, more advanced
range filters and alignment options are applied in GUM contact components. The prime reason for
these parameters is to reduce the number of contacts defined in case of many contacting objects.

TKC Manual Debug Assembly from Assy File Page 5

6: Generic versus Specific Components

In the example listed, the components are of sub-type Generic. This sub-type is reserved for compo-
nents which are defined using Sub-Components only instead of using a hard-coded topology macro.
Thus, the macro Arm_Generic.mac_cre in Toolkit RCC is an empty macro, as objects in the Generic
Robot Arm are generated from the Build method in the creation dialog of object ArmGen.

L]
< | Helo|
-‘,Test_Mnda\,ArmGen ﬂ “'%
Data ‘ Test_Model.Data_ArmGen ﬂ Z A @ Dats_ArmGen of Type RCC.Am
info_ || ﬂﬂﬂ <| =|¥ Long Help | Report | Reload |
-| Test_Model.Data_ArmGen

Sub Type |Ganenc

Reference | Test_Model Base_Prt_Pivt Ref Robot_Am

Inf
Carrier ‘,Test_Moda\,Bass_Prl_F‘wot gl

ent: "ArmGen’ has 6 Sub-Components
Prt_Lower GUM Part Density Subcom
Set Build X,

Prt_Lower.Color ’WCNN
Prt_Lower Radius WV\S\JEI
Prt_Lower Density Wﬁeal

0.0

00

0.0

0.0

0.0

0.0

W [-.|[0] Reference |.Te517Mode\.Baseipnipwot.hrmGeniRetLower ﬂﬂm- Help |[SubComp Pt Lower ~
=

¥ Anima Joint MNone
L | Read| Write | Test_Rabot/Data_ArmGen_Single |User =]
v Data Modify | Del || Data_Qwner « Info | V.Expi _

Object Madify EM Merge All| (153 Retum M ﬂﬂ Al = ﬂ

a

jﬂ Help

Type |GUM j‘Psn j‘Denswty jﬂ
- Prt_Lower a > || Prt_Lower v ﬂ Part

Info | Part_Density Pri_Lower

2: 'Prt_Lower is a 'Data_Owner’

Lt Lt [k L+ |+ |+ [+ |+ |+ |

Symmetry |Nnna

The image above illustrates the steps in editing sub-component objects for the Generic Arm: (1) Click
on Build to (2) open the sub-component manager dialog, (3) select the Data Toggle button to (4) show
the Sub-Component data dialog. This data dialog shows the specific design variables of the current
sub-component type and sub-type.

The image shows that we are working on the Part Sub-Component called Prt_Lower. As shown,
Prt_Lower is a sub-component of type Part and sub-type Density defined in toolkit GUM. In this density
based part sub-component, mass and inertia are defined by its volume and density.

At any time in defining sub-components, the component data can be stored in a data file. In this case,
the name used for this file is (5): [User]/_Data/Test_Robot Data/Data_ArmGen_Single.Arm_Generic.

Gensric Robot Arm Componsnt Dats ===

.Ref_Lower String
.Prt_Lower String
.Ref_Low _Top String
Geo_Lower String

Comment

t_Lower String
_Mot_Lower String

Comment

-Ref Lower.Ori Real

(40.0d) Units = Angle Comment = "Ori. of i

Var Set Var = .Prc_Lower.Color Object
.Prc_Lower.Radius Real
.Prc_Lower.Density Real

.colors.YELLOW Comment
(1.0E-002m) Units = Length Comment
(7800.0 (kg/m**3)) Units = Density Comment

Var S
Var S
Var S

SNanme.Ref_Low_Top.Loc Real (0.€72m) Units = Length Comment

TKC Manual Debug Assembly from Assy File Page 6

The image above shows the top section of this data file with: (1) the definition lines of the sub-compo-
nents, (2) one of these sub-components is part object Prt_Lower. The data (3) of the sub-components
is stored further down in the data file where (4) illustrate the specific graphics and inertia data for
Prt_Lower

Summarizing, a generic component sub-type is defined with sub-components for which both topology
and data are stored in the component instance data file only. On the other hand, both topology and
default data values of a specific sub-type of a component are defined in the *.mac_cre and *.mac_dat
files of the Toolkit.

Using the Merge All button on the sub-component builder dialog, a generic component can be
converted completely to a specific component. Note that this conversion must be followed by a save
operation of component topology and data to ensure storage as specific objects in the toolkit code of
a new sub-type of this component.

5t View Settings Tools TKC Manual [# ki) | FEE L, SRS o i
s Connectors | Motions | Forces | Elements | Design Exploration | Plugins | Machinery | Simulation | Results |
#0080 WU s - A @LP BT
auasg By Nga|POPN S0

Solids Flexible Bodies Construction Booleans Features

<\ \r Long Heup|Repun|Relaaa\

Test_Model Data_AmGen W
Sub Type Generic

W Component ArmGen’ has ‘0’ Sub-Comps - ®

<|2| Help | mo |
Type [GUM | [Marker J/ ‘d -
Hame [New_Hame Ref a [T Fre— 0.00) Resl <] >| e e
o | cotowr [ctonveiow e | e
‘Data_AmGen’ has 0 and ‘ArmGent has ' Sub-Comps Radivs Lower | (1.05.02m) Vil | 2"
ay[csm -
Syrunsty [fione Density_Lower | (7800.0fkg/m**3)) Real

Loc_Low_Top (0.672m) Real I
Width_Lower 01m) Real The Model

|
Location [Equals -
E Test_bodel

Orientation | Equals

I+P+?+?+?+MI+‘

= [one) Depth_Lower [(6 0E-02m) Real Component [Test Model AmGen 3|
RefP1 [ttone) | T_wall Lower [(1.08.02m) Real NewSubrye [Newdm
Hea [done) | Color_tnt_Lower [colors YELLOW Color Store Objects | Both
GET [one) | #] Size_Lower (5.0E-03m) Visual Name Hints | Yes
RefP4 == ’\JW-MW—ﬂ BecMode [Coate -]
RefP5 [fpone) = Verbose Yes

Read| Wite|[Test RobovData_AmGen_Single User]
o el e — i |10l _'wm S—
Object Create nMergeAﬂ Retum _Iﬂ Edit ’7’7 Execate SI MNKS ZUp | % ‘ B

5
B h|@|@‘3_‘ F Ribbon | Debug 2B 2 plax|E el REEICIOREEL-E
5 A _ew_pmmac gt 1 |
L) -
§ ﬁ -
Close z

Aply | Parent \ Children | Modity \r Verbose Clear | Read from File Saeta File
cotors.vELION

.colors. YELLOW

User Defined language file - Adams_cmd length: 3351 lines: 41 Ln:19 Col:2 Sel:0]0 Windows [CRLF) UTF-8 NS

The image above shows the complete process of converting and storage:

Click the Merge All Button on the sub-component manager dialog,

After the merge process all sub-components from ArmGen are merged into specific code,
The data of the component is renamed and transferred to specific variables,

To store the component definition in the RCC toolkit, use Utility CSM.Store_Component,

In the dialog fields of the store component utility, select component name ArmGen and use

vk wnN e

New_Arm as the new type name for the sub-component,

The different topology and data objects stored in toolkit files are echoed to the Info dialog,

7. The data definition of the specific component is stored in [RCC]/Arm_New_Arm.mac_dat. Note
the resemblance with the data objects in the data dialog for Data_ArmGen.

o

TKC Manual Debug Assembly from Assy File Page 7

Note 1: A reasonably intuitive algorithm is used to rename the data objects of the component. As
shown, Data_ArmGen.Prt_Lower.Density is renamed to Data_ArmGen.Density_Lower.

Note 2: Users can rename data and topology objects before using the CSM.Store_Component Utility.
This allows for complete freedom in naming conventions and structure definition.

Note 3: Users must be aware of the fact that after storing data and topology of ArmGen as a New_Arm
subtype the registry of the RCC toolkit has also been updated. The file [RCC]/_RCC.cfg toolkit registry
file must be stored as well to reflect this and ensure correct reloading of the toolkit from the macro
files.

7: Perform Simulation and Summary

This completes the section to explain a more advanced method for loading a TKC Assembly. In this
section, the loading process was split into different sections, allowing a full model Assembly to be
partially loaded and objects in the Assembly to be further expanded and extended before creating the
final complete Assembly. In all of these stages, measures can be displayed of the model as defined up
to that moment and simulations can be performed to check the correctness of interactions between
the model components defined in the model.

TKC Manual Debug Assembly from Assy File Page 8

