
TKC Manual Debug Assembly from Assy File Page 1

Debug Model Assembly from Assy File

Table of Contents
1: Introduction

2: Syntax of Blocks in a TKC Assembly File

3: Load and Check the Model_Data Assembly Block

4: Load, Delete and Update Robot Components

5: Create Load_Contacts and explain Contact Interface

6: Generic versus Specific Components

7: Perform Simulation and Summary

1: Introduction
In this section of the TKC manual we will illustrate the use of the TKC Assembly loader to debug an

Assembly. Assembly files can be separated in action blocks, each block represents a separate part of

the complete Assembly model.

This functionality allows users to:

1) Load an Assembly file piece-by-piece;

2) Test the model in the current state of completion, including deleting and recreating objects;

3) Continue loading the assembly file to a next block;

Using this approach, the assembly is functionally used as a model creation template which is used to

check models and strongly supports interactive improvement of toolkit based model components.

2: Open Assembly Loader Dialog
The generic Assembly loader is opened from an empty model. The dialog Assy_File field is set to

Test_Robot and the Assy_Lib List option is set to User to allow loading this specific Assembly. The

contents of the Assembly file can be printed by pressing the Assy_File button or by opening it in any

available text editor.

The image below illustrates the syntax of denoting Blocks in the Test_Robot Assembly file. The marked

lines 21 and 48 are the start and end lines of the Model_Data Block. Line 48, the start line of block

Robot is automatically the end line of the previous block Model_Data.

The minimal syntax of a valid Block Line is: ‘ ! @Block Block_Name ! Block Comment’

Note 1: To ADAMS, a Block Line is a comment line. Blocks are parsed using a separate Python parser

to create a dedicated Assembly file which executes the block dependent commands.

Note 2: Line 35 is not a valid Block Line due to the missing ‘@’ character before the Block keyword.

TKC Manual Debug Assembly from Assy File Page 2

During the execution of lines in an Assembly file, the criterium for running code inside a Block is the

absence (as a model object) of the first TKC object listed inside a Block.

3: Load and Check the Model_Data Assembly Block
Thus, the code assumes block Model_Data to be completed when object Data_Base (see line 27) exists

in the model. The code will then jump to the start of the next Block Robot which will be executed only

when no model object Base is found. The image above shows the Assembly dialog before creating the

model objects until the end of the Model_Data Block. Obviously, in the Model_Data block, no TKC

components are defined in the model but only data elements for the model components.

TKC Manual Debug Assembly from Assy File Page 3

The above image shows the process during and after executing this Block: (1) after executing the

Assembly dialog, (2) a list of data objects is created which can be edited by (3) clicking on the data

stack icon to show the (4) Data objects selection menu. Markers Ref_Model and Ref_Load used as

references for the robot Base part and the Load respectively were also defined in this code block.

4: Load, Delete and Update Robot Components
Similarly, model components required for the robot parts are defined by the Robot Block of the

Assembly. While designing or updating the macro code of the RCC toolkit, users can use the Block

functionality as Follows: (1) Load objects from an Assembly, (2) set User Mode to Expert_User in the

Control_Dialog, (3) delete a chain of components, (4) edit RCC macro files or add functionality and

finally, (5) re-create components in the same sequence as listed in the Assembly file.

Note 1: In the robot model, object Gripper is connected to object ArmGen. Therefore, to update the

definition of ArmGen we first have to delete Gripper and then ArmGen and recreate these objects in

TKC Manual Debug Assembly from Assy File Page 4

reverse order. Meanwhile, the component dialogs must not be closed as they contain the parameters

of components.

Note 2: In the image shown, Gripper is deleted which is reflected by the yellow Name label on the

dialog. The fields data in the dialog are remainders from the previous instance of Gripper.

Note 3: See section Generic versus Specific Components for more info on the Generic Sub-Type

5: Create Load_Contacts Block and explain Contact Interface
Selecting the Load_Contact list option and executing the Assembly dialog will start the creation of the

Load object and the contacts between Load and Gripper. The textual info generated by the Assembly

loader shows that three contacts are created.

The method used for the definition of contacts is as follows:

• Both Load and Gripper define some Contact Interface objects by a call to the TKC Utility

Manage_IFace embedded in the component topology macro or sub-components.

• For debugging, interface objects information can be listed with TKC pop-up menus on components

by selecting: -Info, -Interface. In most cases, the lists can also be retrieved from a component child

object (such as part Gripper__Prt_Hand)

• The lists show geometries in a labeled contact group of the component. In the image below, a

contact list labeled Grasp is shown for the Gripper object containing three geometries on parts

Gripper__Part_Hand and Gripper__Prt_Thumb.

• In the Test_Robot Assembly, a GUM.Contact_2UDES contact component named Cont_Load is

defined between contact group Grasp of Gripper and contact group Tube_Shape of Load. Per

default, all objects in Grasp will contact all objects in Tube_Shape. The creation dialog of Cont_Load

is shown in the image below showing the required input parameters to the component.

TKC Manual Debug Assembly from Assy File Page 5

• In case parameters Range_[xxx] and Align_Seg are set to values not equal to ‘All’, more advanced

range filters and alignment options are applied in GUM contact components. The prime reason for

these parameters is to reduce the number of contacts defined in case of many contacting objects.

TKC Manual Debug Assembly from Assy File Page 6

6: Generic versus Specific Components
In the example listed, the components are of sub-type Generic. This sub-type is reserved for compo-

nents which are defined using Sub-Components only instead of using a hard-coded topology macro.

Thus, the macro Arm_Generic.mac_cre in Toolkit RCC is an empty macro, as objects in the Generic

Robot Arm are generated from the Build method in the creation dialog of object ArmGen.

The image above illustrates the steps in editing sub-component objects for the Generic Arm: (1) Click

on Build to (2) open the sub-component manager dialog, (3) select the Data Toggle button to (4) show

the Sub-Component data dialog. This data dialog shows the specific design variables of the current

sub-component type and sub-type.

The image shows that we are working on the Part Sub-Component called Prt_Lower. As shown,

Prt_Lower is a sub-component of type Part and sub-type Density defined in toolkit GUM. In this density

based part sub-component, mass and inertia are defined by its volume and density.

At any time in defining sub-components, the component data can be stored in a data file. In this case,

the name used for this file is (5): [User]/_Data/Test_Robot_Data/Data_ArmGen_Single.Arm_Generic.

TKC Manual Debug Assembly from Assy File Page 7

The image above shows the top section of this data file with: (1) the definition lines of the sub-compo-

nents, (2) one of these sub-components is part object Prt_Lower. The data (3) of the sub-components

is stored further down in the data file where (4) illustrate the specific graphics and inertia data for

Prt_Lower

Summarizing, a generic component sub-type is defined with sub-components for which both topology

and data are stored in the component instance data file only. On the other hand, both topology and

default data values of a specific sub-type of a component are defined in the *.mac_cre and *.mac_dat

files of the Toolkit.

Using the Merge All button on the sub-component builder dialog, a generic component can be

converted completely to a specific component. Note that this conversion must be followed by a save

operation of component topology and data to ensure storage as specific objects in the toolkit code of

a new sub-type of this component.

The image above shows the complete process of converting and storage:

1. Click the Merge All Button on the sub-component manager dialog,

2. After the merge process all sub-components from ArmGen are merged into specific code,

3. The data of the component is renamed and transferred to specific variables,

4. To store the component definition in the RCC toolkit, use Utility CSM.Store_Component,

5. In the dialog fields of the store component utility, select component name ArmGen and use

New_Arm as the new type name for the sub-component,

6. The different topology and data objects stored in toolkit files are echoed to the Info dialog,

7. The data definition of the specific component is stored in [RCC]/Arm_New_Arm.mac_dat. Note

the resemblance with the data objects in the data dialog for Data_ArmGen.

TKC Manual Debug Assembly from Assy File Page 8

Note 1: A reasonably intuitive algorithm is used to rename the data objects of the component. As

shown, Data_ArmGen.Prt_Lower.Density is renamed to Data_ArmGen.Density_Lower.

Note 2: Users can rename data and topology objects before using the CSM.Store_Component Utility.

This allows for complete freedom in naming conventions and structure definition.

Note 3: Users must be aware of the fact that after storing data and topology of ArmGen as a New_Arm

subtype the registry of the RCC toolkit has also been updated. The file [RCC]/_RCC.cfg toolkit registry

file must be stored as well to reflect this and ensure correct reloading of the toolkit from the macro

files.

7: Perform Simulation and Summary
This completes the section to explain a more advanced method for loading a TKC Assembly. In this

section, the loading process was split into different sections, allowing a full model Assembly to be

partially loaded and objects in the Assembly to be further expanded and extended before creating the

final complete Assembly. In all of these stages, measures can be displayed of the model as defined up

to that moment and simulations can be performed to check the correctness of interactions between

the model components defined in the model.

